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Abstract: Super-resolution fluorescence microscopy, with a spatial resolution beyond the
diffraction limit of light, has become an indispensable tool to observe subcellular structures at
a nanoscale level. To verify that the super-resolution images reflect the underlying structures
of samples, the development of robust and reliable artifact detection methods has received
widespread attention. However, the existing artifact detection methods are prone to report false
alert artifacts because it relies on absolute intensity mismatch between the wide-field image and
resolution rescaled super-resolution image. To solve this problem, we proposed DETECTOR, a
structural information-guided artifact detection method for super-resolution images. It detects
artifacts by computing the structural dissimilarity between the wide-field image and the resolution
rescaled super-resolution image. To focus on structural similarity, we introduce a weight mask to
weaken the influence of strong autofluorescence background and proposed a structural similarity
index for super-resolution images, named MASK-SSIM. Simulations and experimental results
demonstrated that compared with the state-of-the-art methods, DETECTOR has advantages in
detecting structural artifacts in super-resolution images. It is especially suitable for wide-field
images with strong autofluorescence background and super-resolution images of single molecule
localization microscopy (SMLM). DETECTOR has extreme sensitivity to the weak signal
region. Moreover, DETECTOR can guide data collection and parameter tuning during image
reconstruction.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Super-resolution microscopy techniques, with the spatial resolution beyond the diffraction limit
of light, provide unprecedented insights into subcellular structures at the nanoscale and have been
widely used [1]. However, due to the complexity of instrument setup [2,3], imaging conditions
[4,5] and reconstruction methods [6–8], super-resolution reconstructed images are prone to
generate artifacts such as missing structure or structural sharping. Although there is a lot of work
to reduce the artifacts such as improving the reconstruction method [9], adjusting irradiation
intensity and labeling density [4], it is difficult to get an artifact-free super-resolution image.
These artifacts extremely hamper visual understanding of the structure of samples. To verify
that the super-resolution images reflect the structure of the sample, the importance of developing
robust and reliable artifact detection methods is widely concerned.
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Generally, artifacts in super-resolution microscopy techniques refer to the differences between
the underlying structures of samples and the reconstructed super-resolution image. However,
due to the lack of ground truth structure, it is necessary to compare super-resolution images
with alternative data. The conventional method is researcher-based detection, which relies
on the prior knowledge of the expected structure or the benchmarking image reconstructed
from other high-resolution imaging methods such as electron microscopy [10]. However, this
manual strategy is subjective and demands immense human labor to cover all artifacts. Recently,
Super-resolution QUantitative Image Rating and Reporting of Error Locations (SQUIRREL)
[11], with reference to the wide-field image, transforms artifact detection problem into image
similarity assessment problem. It detects artifacts by computing the absolute pixel difference of
the wide-field image and the resolution-rescaled super-resolution image. However, this pixel-wise
absolute mismatch computing is prone to report artifacts that do not exist (Supplement 1). There
are three main reasons including autofluorescence background and noise of wide-field images, and
the intensity inconsistency between the super-resolution image of single-molecule localization
microscopy (SMLM) and the wide-field image [8]. Though SQUIRREL linearly transforms the
intensity of super-resolution image to maximally match that of the wide-field image, this global
intensity match is not suitable to a wide-field image that contains inhomogeneous background
fluorescence (Fig. S1). Besides, the noise of wide-field image can affect the performance
of SQUIRREL (Supplement 2). For super-resolution image of SMLM, there exist intensity
information inconsistency between these two images. For a wide-field image, the intensity of
each pixel depends on the label density of fluorescent molecules and the brightness of activated
molecules. While, for super-resolution images reconstructed by SMLM, the intensity of each
pixel is depend on the label density of fluorescent molecules and the blinking number of every
single molecule. This intensity information inconsistency of the two images can lead to bias
when calculating the error map depending on the intensity. (Fig. S2).

In this article, we propose a structural information guided artifact detection method (DE-
TECTOR). It recognizes artifacts by computing the structural dissimilarity between the wide-field
image and the degraded super-resolution image. To accurately compute structural information
difference, our method has three key features. To ensures the resolution of degraded super-
resolution images consistent with wide-field images, DETECTOR rescales the resolution of the
super-resolution image with an actual point spread function (PSF) [12] which is measured from
the optical imaging system. To make the imaging similarity assessment focus on the regions
of structures, DETECTOR introduces a weight mask by extracting structural information from
wide-field image. It is worth emphasizing that, trying background subtraction on wide-field
image before processing with SQUIRREL is not at the same effect as structural information
extraction (Supplement 3). Finally, based on the structural information, we proposed a structural
similarity index for artifact detection in super-resolution images, named MASK-SSIM. The
results show that DETECTOR can quantitatively detect artifacts in super-resolution images
whose size is beyond the diffraction limit. DETECTOR can handle image that contains a strong
autofluorescence background and super-resolution images of SMLM whose intensity information
is inconsistent with that of wide-field image. DETECTOR has extreme sensitivity to the weak
signal region and minor distorted reconstructed structures. Furthermore, DETECTOR can also
help select reconstruction model and adjust model parameters.

2. Methods

2.1. DETECTOR framework

DETECTOR detects artifacts of super-resolution images by transforming the artifact detection
problem into structural information guided image similarity assessment problem. The main idea
is assuming that the reconstructed super-resolution image reflects the underlying structure of
biological samples. After simulating the diffraction process on the super-resolution image, the
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degraded super-resolution image and the corresponding wide-field image should be theoretically
identical. However, considering the wide-field image contains strong autofluorescence background
and the intensity information of super-resolution image of SMLM is not consistent with that of
wide-field image, DETECTOR focuses on the structural similarity between these two images.
Figure 1(A) shows the workflow of DETECTOR. The input of DETECTOR includes a super-
resolution image, a wide-field image and an actual PSF. The output of DETECTOR contains
an error map which shows the artifact distribution of super-resolution image and a similarity
value of MASK-SSIM. There are three main modules in DETECTOR: (a) structural information
extraction, (b) super-resolution image degradation, (c) image similarity assessment. In the
structural information extraction module, DETECTOR extracts structural information from
the wide-field image as a weight mask. In the super-resolution image degradation module,
DETECTOR simulates the diffraction process and obtains the degraded super-resolution image.
In the image similarity assessment module, DETECTOR proposes a new similarity index named
MASK-SSIM. Based on the MASK-SSIM, DETECTOR identifies the artifacts by computing the
similarity of the degraded super-resolution image and the wide-field image. The following is a
detailed introduction of the three modules.

(a) Structural feature extraction. Here, we extract structural features of the wide-field image
as the weight mask. The weight mask can help focus more on regions where present biological
samples and filter out information that is regarded as less relevant during similarity assessment,
such as fluorescence background. In this structural feature extraction module, we extract two key
features to combine the weight mask. One is the edge feature that can preserve the important
geometric properties of the biological sample; the other is the salient feature that distinguishes
the target biological sample from the background. The details of how to extract edge feature and
salient feature can see subsection 2.2.1 and subsection 2.2.2.

(b) Super-resolution image degradation. This module takes super-resolution image and
an actual PSF which is measured from the optical imaging system as input and outputs
resolution-rescaled super-resolution image. Before degradation, because wide-field image and
super-resolution image may acquire from dual channels or different detectors, it is necessary to
align these two images to avoid artifacts caused by position misalignment (see subsection 2.3.1).
The accurate diffraction simulation is a key step to keeping the resolution consistency of the
degraded super-resolution image and the wide-field image. Therefore, we adopted a Gaussian
PSF model of the actual PSF to obtain a degraded super-resolution image (see subsection 2.3.2).

(c) Image similarity assessment. Here, we proposed a new image similarity assessment index
based on structural similarity (SSIM) metric for super-resolution image, named MASK-SSIM
(see subsection 2.4). This module computes the MASK-SSIM metric between the degraded
super-resolution image and the wide-field image with a sliding window. It outputs an error map
to present the artifact distribution of the super-resolution image and an overall similarity value
score. In the error map, the intensity value of each pixel ranges from -1 to 1. It represents the
similarity between the degraded super-resolution image and the wide-field image in the sliding
window area. A higher pixel intensity value means a lower confidence of the reconstructed
structure. Besides, the output similarity score is the mean intensity value of the error map.

2.2. Structural feature extraction

For existing super-resolution image artifact detection methods, directly computing the intensity
difference between degraded super-resolution image and wide-field image is a simple and
straightforward way. However, due to out of focus light and strong autofluorescence background
signal, this kind of method is prone to report artifacts that do not exist. To solve the problem, we
introduce the weight mask to make artifact detection focus on regions where exist biological
structures and filters information that is regarded as less relevant. For wide-field images,
many previous studies have proved that salient region and edge feature are significant in image
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Fig. 1. Overview of the DETECTOR. (A) The workflow of DETECTOR. The wide-field
(WF) image is colored in green and the super-resolution (SR) image, which is reconstructed
by Photoactivated localization microscopy (PALM) [13] is colored in red. The subregions
which are labeled with ’B’ and ’C’ is corresponding area for (B) and (C). The highlighted
regions in the error map indicate inaccuracy reconstruction areas in the super-resolution
image. A higher brightness corresponds to a more inconsistent between super-resolution
image and wide-field image. The MASK-SSIM index is under the error map. The scale bar
is 10um. (B) Details of the yellow box region B for figure A, from left to right: wide-field
image, raw super-resolution image, corresponding error map, and a merged image with
the super-resolution image in red and the error map in green. (C) Details of the yellow
box region C for figure A, from left to right: wide-field image, raw super-resolution image,
corresponding error map and a merged image with the super-resolution image in red and
the error map in green. The line profiles of wide-field image and super-resolution image is
shown in Fig. S5, which shown the mismatch distance between these two images.
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understanding and analysis [14–17]. Based on these two features, we design a weight mask to
emphasize the contribution of different image content to the image similarity assessment. For
the salient region, we adopt mean-shift clustering to recognize regions where exist biological
structures. For structural edge, we adopt wavelet analysis to extract edge features. To obtain a
weight mask from these two features, considering the intensity scale of these images is different,
we first normalized the brightness value of the feature images to 0-255. Then we obtained the
mask image by adding these two images. To prevent the pixel intensity of the mask image
out of bounds during sum, our mask image is 32-bit. In further similarity computation, we
have normalized mask image to 0-1. The details of feature extracting by wavelet analysis and
mean-shift clustering are Section 2.2.1 and Section 2.2.2.

2.2.1. Edge feature based on "â trous" wavelet transform

Edge feature extraction is considered an essential step in many computer vision tasks such as image
segmentation, object recognition, and image classification [18]. As one of the multi-resolution
decomposition methods, the "â trous" wavelet transform [19] can decompose the original image
into an approximate image and a detailed image at a specific scale. Since it can analyze signals
at multi scales, "â trous" wavelet transform can accurately extract edges of biological sample
with different size objects. Accordingly, we applied "â trous" wavelet transform to extract edge
features from the wide-field image.

Here, we assume the input wide-field image C0 contains N × N pixels. In "â trous", C0 can
be decomposed into J (J = log2 N + 1) scale approximation images with the scale function fl.
For each scale s = 2j(1 ≤ j ≤ J), the spatial detail between the image Cs and Cs−1 is minutia
signal, which is generally called wavelet plane wj. The edge feature of wide-field is the second
wavelet plane. To obtain the w2, we choose the B3 cubic spline function [20] as the initial scale
function. We first convolve the C0 with the initial kernel k0 (Eq. (3)) and get the image C1. Then
insert zero between every two items in k0 and get new kernel k1 (Eq. (4)). The zero insertion in
the kernel helps to subtract details of different scale information. C2 is convolved with the new
kernel giving the image C1. Then we subtract C1 and C2 to obtain the edge features.

Cl+1(i, j) = Cl(i, j) ⊗ fl(x, y) (1)

wl+1 = Cl(i, j) − Cl+1(i, j), 0<k ≤ J (2)
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2.2.2. Salient feature based on cluster analysis

Here, we adopt the mean-shift cluster algorithm [21] to analyze image content from the wide-
field image. Mean-shift is a data clustering algorithm commonly used in image segmentation.
Compared with other popular clustering methods such as the k-means method [22], mean-shift
does not need to define the number of clusters. In mean-shift, it considers the pixels of the input
image as sampled from the underlying probability density function and constantly locating the
maximum of a density function. In wide-field, considering there is a significant difference in the
intensity value between the biological sample structure and background. We adopt a mean-shift
to distinguish the wide-field image content. With the advanced defined hyper-parameters, spatial
radius r and intensity feature distance d, mean-shift replaces each pixel with the mean of the
pixels in a range r neighborhood and whose intensity is within distance d. At next iteration,
mean-shift calculate a shift vector Ms(xt

i) (Eq. (5)) to move the region to the location of the
new centroid. When the variation of Ms(xt

i) in the last two iterations is less than a threshold
or the iteration meets a certain number, it indicates that the mean-shift vector has converged.
Thus, pixels with the same or similar intensity will be assigned the same category labels, thereby
achieving salient structures detection.
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(6)

The spatial radius r and intensity feature distance d are the only parameters involved in
DETECTOR. Here, these two parameters determine the sensitivity to clusters. Generally, small
spatial radius and small intensity features result in high sensitivity. While large spatial radius
and large intensity features result in low sensitivity. The higher the clustering sensitivity, the
greater the number of small clusters. Thereby, the clustering results with small parameters can
retain more image details. Here, Fig. 2 shows cluster results with different parameters. In detail,
Fig. 2(B) is set with r = 5 and d = 5. Figure 2(C) is set with r = 15 and d = 15. From the results,
Fig. 2(B) contains more detail structures than Fig. 2(C). Considering that the salient feature is
used in the weight mask computation, to obtain a more representative weight value according to
the image content, we recommend the use of small r and d in the mean-shift method.

2.3. Super-resolution image degradation model

2.3.1. Pyramid sub-pixel registration method

The alignment between the super-resolution image and the wide-field image is necessary,
especially for application of dual channel imaging or the imaging detector across different areas.
Here, we adopt a classic pyramid sub-pixel registration method [23] to align the super-resolution
image to the wide-field image. We first establish a pyramid image for each reference and test
data. The pyramid images offer a multi-scale resolution presentation of the super-resolution
image and the wide-field image by down-sampling. First, the largest-scale resolution images
achieve the initial alignment with the minimum details. Then we used a coarse-to-fine strategy.
The iterative corrections are made for finer details in pyramid image data. Finally, we can get an
excellent aligned super-resolution image. By comparing the merged image after alignment with
the previous merged image, we could see the success of alignment (Fig. 3).
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Fig. 2. Salient features of the wide-field image by mean-shift clustering. (A) The wide-field
images. (B) The clustering results of the wide-field image by a mean-shift algorithm with r
as 5 and d as 5. (C) The clustering results of the wide-field image by a mean-shift algorithm
with r as 10 and d as 10.

Fig. 3. The workflow of alignment. This figure contains two merging processes. The left
subfigure is before alignment, and the right subfigure is after alignment.

2.3.2. PSF Gaussian model

When alignment is completed, DETECTOR rescales the resolution of the aligned super-
resolution image with the PSF model measured from the optical imaging system. Generally,
PSF is mathematically modeled as a Gaussian function at the point (x,y) (Eq. (7)) ( [12,13,24]).
Measuring the full width at half maximum (FWHM) is the most practical way to characterize
PSF. The FWHM of the curve function is the distance between the points where the intensity is
half of the maximum one. To measure FWHM, a 3D image stack with 50 fluorescent beads is
obtained at different Z planes. Then we computed the FWHM of each fluorescent bead according
to their intensity curve and obtained lateral FWHM statistical distribution [25]. The relationship
with parameter σ of PSF gaussian model between FWHM is formulated by Eq. (8). DETECTOR
uses the mean value of FWHM statistical distribution to compute σ value and gets the actual
PSF model.

G(x, y) =
1

2πσ2 exp−
x2+y2

2σ2 (7)

FWHM = 2
√

2 ln 2σ ≈ 2.355σ (8)

2.4. Super-resolution structural similarity metric

To detect artifacts of super-resolution image, besides introduce a weight mask, here we propose
a novel structural similarity metric based on SSIM. The SSIM assesses the image based on
the assumption that human visual perception (HVS) is highly adapted for extracting structural
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information from a scene. SSIM (Eq. (9)) assesses the similarity of two tested image m,n based on
luminance, contrast and structure comparison. These three component comparisons are separately
noted as l(m, n), c(m, n) and s(m, n). The detailed computation of each above component is
shown in Eq. (10), Eq. (11) and Eq. (12). In Eq. (9), the α, β and γ are the computing weights
of the above three components. The constant term Ci(i = 1, 2, 3) in denominator of Eq. (10),
Eq. (11) and Eq. (12) is to avoid that the denominator tends to zero. The formula of C1 and C2 are
shown in Eq. (13) and Eq. (14). The L means the dynamic range of the pixel values. Here, with
reference to the parameters setting in SSIM paper [26], k1 = 0.01 and k2 = 0.03; α = β = γ = 1
and C3 = C2/2. Thus, Eq. (9) is can be inferred to the form of Eq. (15).

However, due to the intensity gap of degraded super-resolution images and wide-field images.
Thus, it is prone to report artifact which does not exist if directly applying the original SSIM
metric because SSIM metric contains the luminance comparison. Here, to weaken the influence
of intensity gap, DETECTOR proposed a novel similarity metric, named MASK-SSIM. MASK-
SSIM metric derives from the SSIM metric. Different from SSIM metric, first, considering
intensity comparison has no significant contribution to the original SSIM metric [27], MASK-
SSIM metric only preserves contrast and structural comparison. Second, to focus on regions
where biological structures exist, MASK-SSIM contains a weight mask that is extracted from the
wide-field image to enhance the structural similarity. The formula of MASK-SSIM is shown in
Eq. (16). The output value of the MASK-SSIM metric ranges from 0 to 1 which is positively
correlated with the image similarity. Specifically, MASK-SSIM metric outputs 1 when input two
identical images and outputs 0 when two test images are entirely different.

Based on the sliding window, DETECTOR outputs error map and similarity value by computing
the MASK-SSIM of degraded super-resolution image and wide-field image. All error maps of
DETECTOR are from 0-255. This is due to the value range of the MASK-SSIM formula. In the
visualization of error maps, to highlight artifacts of super-resolution images, we design an error
map where higher intensity refers to less convince of the reconstructed images. Thus, for the
8-bit error map image, the relationship between the pixel intensity with MASK-SSIM is shown in
Eq. (17). The S(x,y) refers to the MASK-SSIM value at location (x,y) within the sliding window
and the I(x,y) refers to the intensity of the error map at location (x,y). Here, we recommend
adopting the sliding window with size 3 (Supplement 5). The error map of DETECTOR is of
the same size as the super-resolution image, where the intensity value of each pixel presents the
MASK-SSIM value of the sliding window. The overall similarity value is the average value of
the error map pixels.

SSIM(m, n) = [l(m, n)α · c(m, n)β · s(m, n)γ] (9)

l(m, n) =
2µmµn + C1

µ2
m + µ

2
n + C1

(10)

c(m, n) =
2σmσn + C3

σ2
m + σ

2
n + C3

(11)

s(m, n) =
σmn + C2
σm + σn + C2

(12)

C1 = (k1L)2 (13)
C2 = (k2L)2 (14)

SSIM
′

(m, n) =
(2µmµn + C1)(2σmn + C2)

(µ2
m + µ

2
n + C1)(σ

2
m + σ

2
n + C2)

(15)

MASK − SSIM(m, n) =
∑︂
i,j∈Ω

wc(i, j)s(i, j) (16)

where Ω means the sliding window subregion; w means the weight value of the corresponding
sliding region, µm and µn are the intensity of image m and image n; σ2

m and σ2
n are the variance
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of image m and image n; σm and σn are the covariances of image m and image n; σmn is the
covariance of image m and image n.

I(x,y) = (1 − S(x,y)) ∗ 255 (17)

3. Results

3.1. Data preparation

Two simulated datasets and three experiential datasets are used to evaluate the performance of
DETECTOR. The simulated data are microtubule data and grid data. The microtubule dataset
(Fig. 4) is a public synthetic dataset designed in a competition that aims to rank the performance
of 2-dimension SMLM software packages [8]. It shows a realistic microtubule structure with
seven thin tubule structures (constant diameter 25 nm) and one thick tubule structure (constant
diameter 40 nm). In order to design the most realistic synthetic data, the designers consider
experimentally background and signal-to-noise levels based closely on common experimental
conditions. In the dataset, there are three independent sources of photons: the signal of interest
(activated molecule), the background signal normally distributed, which slowly changes with time,
and the autofluorescent signal simulated by introducing deep clusters of intense fluorophores
that are constantly in an active mode, slowly change with time. The grid data was synthesized
by ThunderStorm (Fig. 5) [28]. The grid data comprises six intersecting lines with gradually
decaying brightness from top to bottom and left to right. The grid data set consisted of only 3000
image frames with low molecular density: 3µm2. The super-resolution image is a direct display
of the single molecules overall with their localization information. The image size is 60 × 60
pixels (1 pixel = 100 nm). Here, we set the FWHM of the PSF model as 210 nm and the range of
the total number of photons from 100 to 600.

Fig. 4. The performance of DETECTOR on simulated public data with strong autofluorescent
background. (A) The wide-field image; (B) The simulated STORM super-resolution image
with actual single molecules positions; (C) The degraded super-resolution image obtained
by actual PSF. (D)The SQUIRREL error map of wide-field image and the degraded super-
resolution image obtained by RSF. (E) The SQUIRREL error map of wide-field image
and the degraded super-resolution image obtained by actual PSF. (F) The error map of
DETECTOR. The color bar is for D,E and F. In the error map, a higher intensity value means
that there is more dissimilarity between wide-field image and super-resolution image. The
scale bar is 10 µm.
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Fig. 5. The performance of DETECTOR on super-resolution image of SMLM. (A) The
wide-field image (B) The simulated STORM super-resolution image with actual single-
molecule positions. (C) The degraded super-resolution image obtained by actual PSF model.
(D)The error map of SQUIRREL with RSF. (E) The error map of SQUIRREL with actual
PSF model. (F) The error map of DETECTOR. The scale bar is 1 µm. As SQUIRREL cuts
the border regions of input imags, the size of A-C and D-E is different.

All experimental data sets are image sequences of cellular structures labeled by the photo-
convertible fluorescent protein (PCFP) mEos3.2. This protein contains two imaging modalities.
Under a 405 nm laser, mEos3.2 can convert from green color to red color. In the red channel, iso-
lated fluorophores can be precisely localized by the PALM. In the green channel, the high-density
fluorophores perform very well with on/off or blinking and bleaching phenomena, which provides
the fluctuation information of the image sequence in the time domain. The cellular structures of
these experimental data include two actin networks in U2OS cells named actin1 (Fig. 7), actin2
(Fig. 6). The clathrin-coated pits (CCP) structure in HeLa cells named CCP data (Fig. 8).

For acquisition, we used a custom-built total internal reflection fluorescence (TIRF) microscopy
system with an Olympus IX71 body (Olympus), high-NA oil objectives, and an electron-
multiplying charge-coupled device (EMCCD) camera (Andor iXon DV-897 BV). For actin data,
the image pixel size of 160 nm was determined by a 100×, 1.49 NA oil objective (Olympus
PLAN APO). For the CCP data, the image pixel size of 66.7 nm was determined by a 150×, 1.45
NA objective, and 1.6× intermediate magnifications.

Therefore, each experimental dataset consists of two sets of image sequences, one is from
the red channel and the other is from the green channel. For actin1, we obtained 20,000
frames of red channel data and 200 frames of green channel data. For actin2, we obtained
50,000 frames of red channel data and 200 frames of green channel data. For CCP data, we
obtained 5,000 frames of red channel data and 200 frames of green channel data. To obtain
the super-resolution images, for frames collected by Photo-activated localization microscopy
(PALM) [13], we adopted Gaussian fitting to locate individual molecules in each image frame
and obtained the super-resolution image. Here, the super-resolution image labeled with PALM
means the frames collected by PALM and reconstructed by Gaussian fitting. For frames of
green channel data which contain high-density molecules, we adopted Super-resolution radial
fluctuations (SRRF) [29] and Single molecule-guided Bayesian localization microscopy (SIMBA)
[30,31] to obtain the super-resolution image. Specifically, we adopted all 200 frames of the
green channel signal to reconstruct the SRRF image. For SIMBA, we used the first 200 red
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Fig. 6. The artifact detection performance of DETECTOR. (A) The wide-field image. (B)
The super-resolution image reconstructed by PALM. (C) The modified PALM super-resolution
image with removed and added structures (arrows). (D) The degraded super-resolution
image generated with RSF. (E)(F) The error map of the original and modified PALM
super-resolution image by SQUIRREL individually. (G) The degraded super-resolution
image generated with actual PSF. (H)(I) The error map of the original and modified PALM
super-resolution image by DETECTOR.
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Fig. 7. The sensitivity to structural distortions. Row A-C and D-F represent two subregion
examples. Each column corresponds to one rotation angle, from left to right: 0◦ rotation, 5◦
rotation, 10◦ rotation, 15◦ rotation and 20◦ rotation. For each example, the first row (A, D)
presents the merged image where the wide-field image is colored in green and the rotated
degraded super-resolution image is colored in red. The second row (B, E) presents the error
map of SQUIRREL. The third row (C, F) presents the error map of DETECTOR.

channel frames for single-molecule position extraction then used all 200 green channel frames
for Bayesian calculation to get the final super-resolution image.

3.2. Performance on the simulated dataset

3.2.1. DETECOR is robust to autofluorescent background

In this experiment, we tested DETECTOR on a public synthetic dataset to show it only focus
on artifacts of biological structures in super-resolution images. In this public synthetic dataset,
there is a wide-field image (Fig. 4(B)) that contains strong autofluorescent background and
a ground-truth super-resolution image (Fig. 4(A)) which accurately shows structures of the
wide-field image. This means if we rescale the resolution of the super-resolution image to be
the same as that of the wide-field image, the structural information of these two images is the
same. Figure 4(C) shows the resolution rescaled super-resolution image. Then, we computed the
similarity between the degraded super-resolution image and wide-field image in DETECTOR and
obtained an error map and MASK-SSIM value (Fig. 4(F)). In the error map, a higher intensity
value means that there are more dissimilarities between wide-field image and super-resolution
image. As DETECTOR only focuses on artifacts of biological structures, this error map does not
show any obvious highlight regions. This makes sense because the only difference between a
wide-field image and a degraded super-resolution image is caused by the strong autofluorescent
background and noise.

Also, we tested SQUIRREL on this public synthetic dataset. When rescaling the resolution of
the super-resolution image, we tested two ways which are supported by SQUIRREL. The detail of
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Fig. 8. Quality evaluation of different super-resolution images reconstructed by SRRF,
SIMBA and PALM with CCP data. (A) The wide-field image. (B) The degraded super-
resolution image of SIMBA. (C) The PALM super-resolution image. (D) The SRRF
super-resolution image. (E) The SIMBA super-resolution image. (F) The degraded super-
resolution image of PALM. (G) The degraded super-resolution image of SRRF. (H) The error
map corresponding to the PALM super-resolution image. (I) The error map corresponding
to the SRRF super-resolution image. (J) The error map corresponding to the SIMBA
super-resolution image. The indicated score is the MASK-SSIM metric value. The scale bar
is 10 µm.

the degraded super-resolution image of SQUIRREL can see the Fig. S1. For further discussion,
here we briefly describe these two degraded methods. The one is the same as DETECTOR,
SQUIRREL supports rescaling resolution with actual PSF that is modeled by the Gaussian model.
The other is that SQUIRREL estimates a resolution scaling function (RSF) by optimization.
Figure 4(D) shows the error map of the wide-field image and the degraded super-resolution image
obtained by RSF. Figure 4(E) shows the error map of the wide-field image and the degraded
super-resolution image obtained by actual PSF.

In the error map of Fig. 4(D) and Fig. 4(E). It makes sense that SQUIRREL shows highlight
regions in non-structures regions because it detects artifacts by computing intensity mismatch.
Whether using the actual PSF or the RSF, autofluorescent background can affect the results.
Thus, for the dataset with strong autofluorescent background, if users focus more on the
autofluorescent background, SQUIRREL is more suitable. While, if users want to reduce the
effect of autofluorescent background on the results DETECTOR is more suitable.

3.2.2. DETECTOR is robust to super-resolution images of SMLM

To prove that DETECTOR is robust to super-resolution images of SMLM, we tested DETECTOR
on a synthetic dataset whose intensity of lines gradually changes. Figure 5(A) shows the wide-field
image of this dataset where intensity value of each line gradually decreases from left to right
and from top to bottom. Figure 5(B) is the ground truth image provided by ThunderSTORM
simulation method. ThunderSTORM is one of the SMLM methods. Here, we designed a
synthetic dataset with gradually decreased intensity to show the molecules whose intensity has
sudden changes. This intensity sudden change is not a labeling density artifact that presents in
both the wide-field image and super-resolution image but is caused by an intensity information
mismatch between these two images. For a wide-field image, the intensity of each pixel depends
on the label density of fluorescent molecules and the intensity of activated molecules. While, for
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super-resolution images reconstructed by SMLM, the intensity of each pixel is depend on the
label density of fluorescent molecules and the blinking number of every single molecule. This
intensity information mismatch of the two images can lead to bias when calculating the error
map depending on the intensity.

It is worth emphasizing that this artifact refers to the molecules whose brightness suddenly
changes in the reconstructed SMLM images rather the intensity gradually decrease of line
structures. Similar to the above experiment, we both tested SQUIRREL and DETECTOR on
the grid data. The error maps are shown in Fig. 5(D)–5(F). Here, Fig. 5(D) and 5(E) are the
error maps of SQUIRREL. One is computed with the RSF and the other is computed with the
actual PSF model. The detail of the degraded super-resolution image of SQUIRREL can see
the Fig. S2. Here, Fig. 5(F) is the error map of DETECTOR. From the results, we can see that
although SQUIRREL linearly adjusts the intensity of the super-resolution image to match the
intensity of wide-field image maximally. Figure 5(D) and Fig. 5(E) shows highlight areas where
there exist an intensity gap. As DETECTOR only focus on structural similarity, the error map of
DETECTOR contains no highlight areas and the MASK-SSIM value is close to 1.

3.3. Performance with experimental dataset

3.3.1. Artifact detection performance of DETECTOR

In this experiment, we selected a subregion of actin1 data to evaluate the artifact detection
performance of DETECTOR (Fig. 6). The wide-field image of actin1 is shown in Fig. 6(A)
and the corresponding super-resolution image which PALM reconstructs is shown in Fig. 6(B).
To obtain a super-resolution with structural artifacts (Fig. 6(C)), we deliberately removed two
filaments (arrows marked as 1 and 3) and added one filament (arrow marked as 2) from the
raw super-resolution image. We tested the raw super-resolution image and the modified super-
resolution image on both SQUIRREL and DETECTOR. With the measured real PSF model,
SQUIRREL and DETECTOR separately rescale the resolution of the super-resolution image
(Fig. 6(D),G) and output corresponding error maps. The output of error maps of SQUIRREL
are shown in Fig. 6(E) and Fig. 6(F). The output of error maps of DETECTOR are shown in
Fig. 6(H) and Fig. 6(I). From the error map, we can see that both DETECTOR and SQUIRREL
can clearly detect the artifacts in the subregion 1. For the other missing substructure (arrow
marked as 3), only DETECTOR shows corresponding highlighted regions on the error map. For
the additional substructure (arrow marked as 2), DETECTOR also highlights this artifact. The
results demonstrate the capability and advantage of DETECTOR to identify artifacts even at low
signal-to-noise images accurately. Besides, we tested both DETECTOR and SQUIRREL on a
public dataset [11] to show more convince results (Supplement 6).

3.3.2. DETECTOR is sensitive to small structural distortions

Besides identifying artifacts of images with low signal-to-noise, DETECTOR can discriminate
slight structural distortions. We chose two subregions of actin2 data and rotated the reconstructed
structures of the super-resolution image with different degrees: 0◦, 5◦, 10◦, 15◦, 20◦. To visualize
the structural deformation, we color the wide-field image in green, color the corresponding
degraded super-resolution image in red, and then merge the two images (Fig. 7(A, D)). From
Fig. 7(A, D), we can see that as the rotation angle increased, the mismatches between the
degraded super-resolution image and the wide-field images became larger and larger. We tested
raw super-resolution images and all rotated images both on SQUIRREL and DETECTOR.
Figure 7(B),C are the results of SQUIRREL and DETECTOR on subregion 1. Figure 7(E),F
are the results of SQUIRREL and DETECTOR on subregion 2. From the results, we can see
that, both SQUIRREL and DETECTOR can detect structural distortions. When the rotation of
structures is 0◦, there are still highlight areas in error maps. This is because that the degraded
super-resolution image is not exactly the same as the wide-field image. We convolved the
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super-resolution image with actual PSF to achieve the resolution consistency of the degraded
super-resolution image with the wide-field image. At this resolution level, we detect artifacts by
image similarity assessment. From Fig. 6(B1) and Fig. 6(C1), both SQUIRREL and DETECTOR
show highlight areas. Thus, we can conclude that the super-resolution image may exist some
artifacts. Besides, in order to make the experiment more convince and equivalent, we tested a
dataset from SQUIRREL (Supplement 7). As the biological sample becomes more distorted, the
highlight regions of these two kinds of error maps are more bright. Particularly, even when the
rotation angle is 5◦, DETECTOR highlight the structural distortions of the corresponding error
map.

3.3.3. Guiding the selection of super-resolution techniques

Besides detecting structural artifacts, DETECTOR can help guide choosing the ideal super-
resolution reconstruction model. Here, we used three kinds of reconstruction methods to obtain a
super-resolution image of CCP data. The wide-field image of CCP data is shown in Fig. 8(A).
The three reconstruction methods are PALM, SRRF and SIMBA, and their corresponding
super-resolution image is shown in Fig. 8(C), 8(D) and 8(E). From these super-resolution images,
we can see that except for PALM, both SRRF and SIMBA can reconstruct the ring structure
of CCP. Furthermore, SIMBA is more suitable for this data because it reconstructs more fine
structures. Theoretically, with a sufficient frame series, PALM can present the highest resolution
image of this data. However, because this dataset only collects 5,000 original frames, it is
reasonable that the resolution of PALM reconstructed images is worse than SRRF and SIMBA.
Figure 8(B), 8(F), 8(G) show the degraded super-resolution image, which is obtained with a
real measured PSF model. Figure 8(H), I, J shows the error maps of DETECTOR and their
corresponding MASK-SSIM values. According to the results, we can find that the value of
MASK-SSIM is positively correlated with the quality of the reconstructed images. Thus, for this
CCP data, SIMBA can reconstruct a high-quality super-resolution image.

3.3.4. Guiding parameter tuning of the reconstruction model

For some reconstruction methods (such as SIMBA), key parameters may affect the quality of the
reconstructed super-resolution image. Therefore, how to quickly select the optimal parameters
is an important issue. With the guidance of MASK-SSIM, DETECTOR can help users tuning
parameters during reconstruction. In SIMBA, the low-pass filter (lpf) is a key parameter in
reconstruction, which affects the analysis of low-frequency and high-frequency information in
the frame series. The lpf value can be set as: 1, 3, and 5. Higher lpf value can lead to smoother
structures of super-resolution images. Here we use SIMBA to reconstruct CCP super-resolution
images, where lpf is set to 1, 3 and 5. As shown in Fig. 9, Fig. 9(A) is the wide-field image of CCP
data and the three super-resolution images are shown in Fig. 9(B)-D. Here, we tested these three
images on DETECTOR and obtained the corresponding MASK-SSIM values. The results were
quite consistent with a priori knowledge. When the lpf was set to 1, the low-frequency information
was lost, leading to incomplete structures and the lowest quality score in the super-resolution
image. The situation was improved when the ring structures began to emerge when the lpf was
set to 3. When increasing lpf to 5, the super-resolution image presents a smoother structure and
sacrifices the sharp edges. The quality score of SIMBA super-resolution images with lpf set to 3
and 5 are similar values. However, Fig. 9(C) contains much more sharp edges, leading to the
highest quality score among the scores with the three settings. The results demonstrated that
DETECTOR helps tune parameters in super-resolution image reconstruction.

3.3.5. Guiding data collection of the PALM

Generally, in the super-resolution reconstruction method, the number of frames during data collec-
tion is positively correlated with the resolution of the reconstructed image. However, collecting
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Fig. 9. Guiding parameter tuning of the reconstruction model. (A) The wide-field image of
the CCP data. (B)-(D) The SIMBA super-resolution images with lpf = 1, 3 and 5. Magnified
images of subregions (yellow box) are presented below each image (A-D). The scale bar is
10 µm.
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longer frames requires more acquisition time and can lead to phototoxicity, photobleaching
and sample drift. Therefore, it is crucial to choose a sufficient number of frames during data
collection. Besides guiding parameters tuning of the reconstruction model, DETECTOR can also
guide the data collection. Here, we collect 10 sets of actin2 data. The number of frames of each
set is (5,000, 10,000, 15,000 · · · 50,000) and each set is increased by 5,000 frames. With these
datasets, we reconstructed ten PALM super-resolution images. Figure 10 shows a sub-region of
the wide-field image of actin2 data and its corresponding ten reconstructed images. From the
figures, we can see that as the number of frames increases, the super-resolution image presents
more fine detail structures. Then we tested these ten set images on DETECTOR and analyzed
the MASK-SSIM values of each dataset (the bottom right figure of Fig. 10). In Fig. 10, we can
see that the MASK-SSIM value gradually increases as the number of frames increase until it
reached 20,000. After 20,000, the MASK-SSIM value remains stable. Thus, we can conclude
that collecting 20,000 frames would be sufficient for PALM reconstruction. With the guidance of
DETECTOR, we can choose a suitable number of frames during the data collection to avoid
sample drift and damage.

Fig. 10. Ten super-resolution images reconstructed by PALM and their MASK-SSIM value
on DETECTOR. The presented images are one subregion of the whole actin2 image. Label
1 indicates the super-resolution image reconstructed from 5,000 frames; Label 2 indicates
the super-resolution image reconstructed from 10,000 frames and so on. The bottom right
figure is a line chart that presents the relationship between the number of frames and the
MASK-SSIM index. The abscissa represents the number of image frames, and the unit is
5,000 frames. The ordinate is MASK-SSIM value.

4. Discussion and conclusion

In this work, we proposed an image artifact detection method (DETECTOR) for super-resolution.
Different from the existing methods, our method focus on structural artifacts. Our method
contains three key features to make the image similarity assessment focusing on structural
information. We used the actual PSF measured from the optical imaging system to make the
resolution consistency between the wide-field image and the degraded super-resolution image.
We introduced a weight mask extracted to filter out the strong autofluorescence background and
proposed a novel MASK-SSIM index for super-resolution image assessment.

The simulated experimental results supported that DETECTOR has an advantage in assessing
images of biologically thick samples with strong autofluorescence background, such as tissue
slices, embryos and tiny organisms. The simulated experimental results also exhibited that
DETECTOR is not susceptible to distortion caused by sudden changes in the molecular intensity
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of the fluorescence image reconstructed by SMLM. Moreover, DETECTOR is surprisingly
sensitive to minor dissimilarities, including distortions as small as 5◦

To verify the reliability of our method for assessing the quality of real experimental data,
especially those reconstructed by SMLM imaging methods, we manually removed and added
substructures in the PALM image. According to the error map of these super-resolution images,
our method can clearly identify artifacts distributed on the weak signal region. We evaluated
super-resolution images from SRRF, SIMBA and PALM/STORM and super-resolution images
reconstructed with different parameter settings. The experimental results show that DETECTOR
can offer valuable guidance for users to select the most appropriate imaging method or the optimal
reconstruction parameter for a given data. We also demonstrated that DETECTOR can guide
data imaging strategies, such as defining a criterion for acquiring a sufficient amount of data. We
envision that DETECTOR would help choose fluorescence labeling strategies as well.

In summary, our study provides a new computation method for artifact detection in super-
resolution images. Compared with the state-of-the-art method, DETECTOR focus on structural
similarity between the wide-field image and degraded super-resolution image. Thereby, it can
avoid a false alert artifact that is caused by the intensity mismatch between these two images. For
example, wide-field images of biologically thick samples which contain strong autofluorescent
background and SMLM reconstructed images whose intensity information is inconsistent with
that of wide-field images. With the experiment of structures rotation, we also found that
DETECTOR is highly sensitive to structural distortion artifacts. Besides, with the guidance of
MASK-SSIM, DETECTOR can help users to select the most appropriate imaging method or the
optimal reconstruction parameter for a given data.

However, DETECTOR has some limitations due to the use of wide-field images as a reference.
First, the degradation of super-resolution images eliminates fine structures in the image, thereby
limiting the precision of detecting artifacts. Second, a wide-field image with high SNR is
essential to ensure the reliability of DETECTOR. We tested DETECTOR on wide-field images
with different SNR. We found that the structures of the wide-field images can be damaged when
the image contains high-level noise, which can affect the similarity computation between the
wide-field image and the degraded super-resolution image.
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